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Abstract: This paper presents a new hybridization between MoM-GEC and a MultiResolution analysis (MR) 

which is based on the use of wavelets functions as trial functions. The proposed approach is developed to speed 

up convergence, alleviate calculation and then provide a considerable gain in requirements (processing time 

and memory storage) because it generates a sparse linear system. The approach consists in calculating the total 

current and input impedance on an invariant metallic pattern through two steps.The first one consists in 

expressing the boundary conditions of the unknown electromagnetic current with a single electrical circuit 

using the Generalized Equivalent Circuit method (GEC) and then deduce an electromagnetic equation based on 

the impedance operator [1,2]. The impedance operator used here is described using the local modal basis of the 

waveguide enclosing the studied structure. The second step consists in approximating the total current using 

orthonormal periodic wavelets as testing functions and the local modal basis of the waveguide as basis 

functions.The proposed approach allows fast calculation of such inner products through the use of the wavelets 

multiresolution (MR) analysis advantages, thus significantly reducing the required CPU-time for microstrip-

type structure analysis [3,4]. A sparse matrix is generated from the application of a threshold .A sparsely filled 

matrix is easier to store and invert [5,6]. Based on this approach, we study a 2-D planar structure including a 

step discontinuity. The obtained results show good accuracy with the method of moments. Moreover, we prove 

the considerable improvements in CPU time and memory storage achieved by the MR-GEC approach when 

studying these structures. 

 

I. Introduction 
Recently, almost planar structures in 2D-dimensional case become the subject of important scientific 

research, in particular in defense and space applications, communication systems and electronics devices such 

as: phased array radar systems, Frequency selective surfaces (FSSs) applications, [7,8]. Many numerical 

techniques have been invested in this context.  Most of these methods consider the radiating structures opened 

(not shielded). 

All the publications in this domain [9,10] have shown that the integral formulation, specifically the 

moment method, was the best to set the full wave methods more efficiently. The method of moments uses the 

integral from of Maxwell‘s equations. These equations are solved by the finite linear space approximation which 

leads to a matrix equation of which the rank is proportional to the number of unknowns. However, in most 

cases, knowledge of the Green‘s functions, either in simple functional form or series expansion form, are 

required. This limits the use of MoM to simple structures in which Green‘s functions are available. The integral 

equation needs enormous amount of analytical effort to implement when supports of basis and testing functions 

are overlapping or share some common points.On the other hand, different formulation are needed when the 

structure changes. Indeed, the application of the spatial-domain MOM requires the necessary Green‘s functions 

in the spatial domain that can be obtained from their spectral domain counterparts, therefor, additional numerical 

implementation are needed. 

Hence, the investigation of complex structures poses a major problem due to the limitation of MoM. 

Thus, it is necessary to use the hybridization of numerical methods to overcome the problem of modeling 

complex structures that contain fine details in large domains. Indeed, the hybridization of numerical methods is 

one of speediest, efficient and accurate solutions of electromagnetic modeling of complex structures. For 

example, hybridization of analytical solution and MoM has been investigated in [11,12]. In this paper, the 

method of moment is combined to the Generalized Equivalent Circuit (MoM-GEC) to convert an integral or 

differential equation into a linear system that will be solved using a matrix representation. The equivalent 

circuits have been introduced in the development of integral methods formulation with equivalent circuit 

problems (V, I) instead of field problems (E,H). This constitutes the concept of MoM-GEC. Its key idea is the 

transposition of field problems in GEC which are simpler to treat and the use of the impedance (admittance) 

operator simplifying then the transition between spectral and spatial domains. 
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A major feature of this method is reducing the spatial degree size of problems. The study of a volume 

structure is solved by a surface approach which makes this method particularly suitable for finite areas in 

infinite medium. Determining the electromagnetic field radiated by an object in a certain volume of calculation 

is reduced to determine the current on its surface, and this problem requires a surface meshing and not a volume 

one, so that we can find the electromagnetic field radiated by the structure in the entire space. MoM-GEC is a 

general method that transforms a functional (differential or integral equation) into a linear equations system that 

can be solved by matrix techniques. 

The procedure of the MoM-GEC method is based on minimizing the residual error on basis and test 

functions in order to get the convergence of the solution. As the number of test functions is high, we need a very 

high number of basis functions to get convergence [2]. This leads to manipulating matrices with great sizes. 

Consequently, the needed memory resources and computational time to solve such problems will be 

considerably increased. 

In this context, several fast algorithms have been used to reduce the computational complexity and 

memory requirement, such as Finite Element Method (FEM), which formulate the electromagnetic problem 

using differential equation, And more power method such as the Fast Multi-pole Method or the Multilevel Fast 

Multi-pole Algorithm (MLFMA), which need more powerful machine to be implemented. In contrast, Wavelet-

Based Moment method which can be implemented easily in personal computer [13,14]. 

the approach proposed in this paper uses Galerkin's procedure, leading to a sparse matrix, which elements are 

constituted of inner products of the local modal basis of the waveguide as basis functions, with periodic 

wavelets as trial functions obtained by integral calculation. 

In this paper, we apply the principle of MR-GEC to analyze planarmicrostrip antenna in waveguide.   

The remainder of the paper is organized as follows: Section 2 describes the generalized equivalent circuits' 

concept. The choice of wavelets as trial functions is described in Section 3. The MR-GEC method will be 

applied in Section 4 to a planar microstripantenna and the theoretical formulation is presented. Section 5 

illustrates the numerical results and discussions at the convergence for the input impedance viewed by located 

source and the reflection coefficient, and compared to advanced design system (ADS) and SONNET. 

 

II. Principles Of GEC Method 
The equivalent circuit presents a true electric image of the studied structures for describing the 

discontinuity and its environment. In fact, for alleviating the resolution of Maxwell‘s equations, the method of 

Generalized Equivalent Circuit (MGEC) was proposed [1,2] in order to represent integral equations by 

equivalent circuits that express the unknown electromagnetic boundary conditions. The discontinuity 

environment is expressed by an impedance operator or admittance operator that represents boundary conditions 

on each side of discontinuity surface.  

In the discontinuity plane, the electromagnetic state is described by generalized test functions that are 

modeled by virtual sources not storing energy. The discontinuity environment is expressed by an impedance 

operator or admittance operator that represents boundary conditions on each side of discontinuity surface. 

However, the wave exciting the discontinuity surface is represented by a real field source or a real current 

source because it delivers energy. 

Generally, the electromagnetic modeling with GEC extends the Kirchhoff‘s laws used in (V, I) concept 

to the Maxwell‘s formalism (E,H). In order to apply Kirchhoff‘s laws accurately, we should substitute the 

magnetic field by the current density J defined as 𝐽 = 𝐻   ⋀𝑛  where 𝑛  is the normal vector to the discontinuity 

surface. It is noted that these generalized equivalent circuits are associated to perfect interfaces, which are 

characterized by the fact that electric field and current density are defined on complementary domains.   

 

2.1. The adjustable virtual sources  

Let‘s consider D a discontinuity plane formed by metallic and dielectric patterns (D = DM + DD). 

Based on current and field properties on D, DM is the metallic sub-domain on which the field is null, and its 

dual current is not null. However, DD is the dielectric domain on which the current is null, and its dual field is 

not null. The concept of virtual source is to assemble all field and current representations in an only one which 

will be valid in all points of the domain D. Figure 1(a) and Figure 1(b) describes virtual sources. 

 

 
 

Figure 1.Symbolic notation of virtual sources: (a) field source; (b) current source. 
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2.2. The impedance operator 

The impedance operator, as shown in Figure 2 is a modal integro-differential operator and presents an 

alternative to the Green operator in the spectral field. The relation between 𝐸  and 𝐽 classically takes the form of 

the Ohm's law: 𝐸  = 𝑍 𝐽  or 𝐽   = 𝑌 𝐸  . 
 

Discontinuity surface (S) 

 
Figure 2.Equivalence between the half- 

 

2.3. The excitation sources  

The excitation sources are defined on a small surface(S) and are characterized by a quasi-static voltage 

or current. We can distinguish two types of planar localized sources: the localized field and current 

sources. Each of the two sources  is described in Figure 3. 

 

 
                                                                          (a)                        (b) 

Figure 3. (a) field source, (b) current source. 

 

III.  Choice of trial functions: wavelets expansion 
In this paper, the trial functions are presented as a superposition of wavelets at several scales including 

the scaling function. A Galerkin method is then applied, where the set of trial functions are used as weighting 

functions to transform the integral equation into algebraic equations in the expansion coefficients. 

Basic wavelet theory can be found in many excellent books [15,16]. The wavelet theory can be 

extended to any size. We briefly present the case in two dimensions (2D), since we are dealing with two-

dimensional structures. There are several approaches for increasing wavelet transform defined in the one-

dimensional case to the two-dimensional case. We will limit our work to the study of the separable dyadic 

multiresolution analysis presented by Mallat [16]. 

Consider a set of subspaces  
ssV in  22 RL .  

 Each sub-space sV  at resolution 
s2  is constructed by the Cartesian product of two dimensional AMR at the 

same level of resolution, that is to say 

yxyx kskskks VVV ,,,, 
                                            (1)             

 

An orthonormal base sV  is composed of scales functions defined:  

 yxkskskks kkyxyx
yxyx

,);()(),( ,,,, 
                           (2) 

 

Where s  is the level of resolution, the index xk  represents the expansion of the subspace associated with the 

variable x  and yk  corresponds to the expansion of the subspace associated with the variable y. These two 

subspaces are generated by two functions at different scales: 

    x
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Similarly, the subspaces generated by the wavelet are noted:
 

    x
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 22 2/

, 
 

    y
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ss

s Wkyy
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 22 2/

, 
                                      (4)

 

 

The dimensional subspace sW is the orthogonal complement of  sV in 1sV . 

The properties of the multi-resolution analysis and the distributivity of the tensor product used to write: 
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This equation shows four different sub-spaces associated with the two-dimensional multi-resolution analysis.  

Each of these sub-space is generated by a mother function of its own: 
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It is therefore necessary to generate a two-dimensional multiresolution analysis, four different 

functions. The indices h, v and associated with new wavelets are given respectively for horizontal, vertical and 

diagonal. This terminology is taken from [17]. They highlight the main direction of oscillation of the signal. 

With these notations, the approximation of a function  yxf , of  22 RL at the resolution 
s2 can be expressed 

in terms of projections on the subspaces sV  by: 

   yxffP
yx

x y

yx kks

k k

kkss ,,,,, 
 



(7) 

Then the improved approximation of the function f at a finer level of resolution 
12 s
 includes information 

generated by three subspaces details. One can then write: 
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The development of a function defined on a finite surface assumes the same shape but with finite limits for 

translation indexes xk and yk . 

The MALLAT decomposition algorithm in the two-dimensional case is a direct extension of the one-

dimensional versions. In the 2D case, we have four types of coefficients defined by: 
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The mathematical equations that generate the 2D-DWT are given by: 
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So , for calculating  the scales coefficients (approximation) and  wavelet coefficients  (details) at 

multiple resolution levels , we simply calculate scales coefficients at  the finest resolution and then deduce by 

the MALLAT‘s algorithm other approximation coefficients and details .For finite-size bodies, the sources 

domain of definition is inherently finite, and the difficulties articulated are encountered if a multiresolution 

approach is sought. In literature, many solutions are provided, and in this work, to expand the current on the 

fundamental interval, the use of a periodic multiresolution system is kept. Such a system can be derived from a 

conventional multiresolution one by the periodic extension. 

 

IV. Validation of numerical results 
4.1 Formulation of the MR-GEC 

The microstrip STEP is widely appearing in low pass filters and other microwave circuits [18]. 

Therefore, it is important to develop analytical techniques to compute accurately the characteristics of this 

discontinuity. The STEP discontinuity structure to be studied is a rectangular microstripantenna , as described in 

Figure 1, laid on an isotropic dielectric substrate and excited on the plane of the circuit by a localized voltage 

source. This structure is shielded in a rectangular metallic box with electric walls and which the top cover is 

placed endlessly. We study this structure at f=4.9 GHz. 

 
Figure 4.Characteristics of the rectangular microstrip antenna. 

 

Based on the implementing rules, we can formulate the problem of searching the current 𝐽 flowing in 

the structure by studying its equivalent circuit. To do this, we bring back the different modes propagating in 

space on the study area and we transpose vacuum to a dipole representing the admittance of vacuum 𝑌 1 . The 

same applies to the ground plane which is replaced by a dipole representative of the admittance shorted 𝑌 2. We 

use an arbitrary excitation 𝐸0
     on the microstrip line subregion. On the plane of the strip, the current density on 

the metal region 𝐽𝑀      is expressed in term of trial functions basis. We then obtain the circuit of Figure 5. 

 

 
Figure 5.Equivalent circuit of the microstrip line. 
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Lets  𝑓𝑚𝑛
𝑇𝐸,𝑇𝑀 be the local modal basis of the EEEEE waveguide enclosing the microstrippatch antenna [1]. 

𝐸  0 = 𝑉0𝐺 (𝑥, 𝑦)denotes the electric field excitation, defined on the surface of the planar source according to a 

distribution 𝐺  on a sub-region of the microstrip line and with an amplitude 𝑉0. 

MJ can be expressed in terms of the magnetic fields defined in the discontinuity plane as [19]:  

 

𝐽 𝑀 = 𝐻   1 ∧ 𝑛  1 + 𝐻   2 ∧ 𝑛  2 = 𝐽 1 + 𝐽 2                                       (11) 

 

where 𝑛    1and 𝑛  2indicate unit vectors normal to the discontinuity plane and directed toward 𝑧 >  0 and 𝑧 <  0, 

respectively. Here, the admittance operators 𝑌 1and 𝑌 2 for region 1 and 2, respectively, are viewed by the 

discontinuity plane. 

Figure 5 describes the electric circuit obtained by the application of GEC modeling to the studied structure, the 

generalized Ohm and Kirchhoff laws are then rewritten as equations system: 
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                                                 (12) 

We obtain then the following system: 

 

 
𝐽𝑀 = 𝐽1 + 𝐽2 = 𝐽

𝐸 = −𝐸0 + (𝑌 1 + 𝑌 2)−1𝐽𝑀 = −𝐸0 + 𝑍 𝐽𝑀
                                    (13) 

 

Sources and their duals are related as: 
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0 1
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                                         (14) 

 

This method requires the involvement of a complete set of orthogonal basis functions  |𝑓𝑚,𝑛   𝑚,𝑛=0,𝑁
, with N the 

number of modes), which should satisfy the boundary conditions imposed by the shielding [19]. This process 

also needs to calculate the mode impedances 𝑧𝑚𝑛
1 and𝑧𝑚𝑛

2, of region 1 and 2, respectively, at the discontinuity 

plane. For each medium 𝑖 ∈ {1,2}, t2he expression of the total modal admittance and impedance for 𝑇𝐸𝑚,𝑛  and 

𝑇𝑀𝑚,𝑛  modes are given respectively by: 
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with 
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When the structure along the 𝑧 axis is terminated in the metallic wall (short circuit), the admittance seen by each 

mode at the interface is given by:  

 ihi
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i
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Y
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,
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  ,                                       (16) 

𝑕𝑖 is the thickness of the medium 𝑖, in our case,  𝑖 = 2; 𝑕𝑖 = 𝑕 (the medium is the dielectric). 

If a termination was an open circuit (no metallic wall at the end of the medium 𝑖), the admittance seen by each 

mode at the interface is given by: 
i

nm

i

nm yY ,

,

,

,
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                                           (17)

 

In our case, the medium 𝑖 is the vacuum.  

The total impedance seen by each mode at the interface is given by: 
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The expression of the impedance operator is expressed as: 
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At this stage, we can project the unknown 𝐽𝑀      (current) on the basis of trial functions, so we will express it with 

series of scaling and wavelets functions (test functions) and then write [13]: 
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where𝑠(−) is the coarsest level and 𝑠(+) the finest level.  

We use the Galerkin method to solve the Eq.20 numerically. The method consists in determining the 

system matrix from the equivalent circuit, and make projections based on test functions. The resulting matrix 

equation is written in this form: 
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⇒ 𝐴. 𝑋 = 𝐵 (21) 

In practice, a wavelet with N vanishing moments enables the cancellation of all wavelet coefficients of a 

polynomial signal whose degree is less than N. Thus, if is polynomial of degree less than N on the support of 

i

kks yx ,, , then   0,,,,,  yxfd i

kks

i

kks yxyx
  [19]. This result is quite significant because it enables high 

compression rates (many wavelet coefficients are zero or negligible). If the 
TE

nm
f

,
 and  

TM
nm

f
,

 modes of the 

empty waveguide are smooth enough to be approximated by a polynomial expression of order less than N , then 

the elements of matrix A vanishes or becomes very small. A threshold is adjusted to get a minimal error in the 

current density. 

A compression rate is defined as follows: 

100*
)(

(%)
2nsialfunctionumberoftr

otssettozertrixelemennumberofma
TC  .                             (22) 

 

The input impedance seen by the source is determined by: 

 

𝑍𝑖𝑛 =
 𝐸0|𝐸0 

 𝐸0|𝐽𝑀  
= (𝐵𝑇𝐴−1𝐵)−1                                        (23) 

 

The reflection coefficient is then expressed as: 

𝑆11 =
𝑍𝑖𝑛−𝑍𝑐

𝑍𝑖𝑛 +𝑍𝑐
   (24) 

 

where𝑍𝐶 = 50 Ωis also the characteristic impedance of microstrip line.  

 

4.3. Validation of the analysis method 

We used the 'Daubechies 5' family on the line and the 'Coifman 5' family on the radiator. Convergence is 
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reached to a level of resolution s_line = 3 and s_ patch = 3. The number of convergence to basic functions is 

40000 (200x200) TE and TM modes. 

At the frequency F = 4.9 GHz, the value of the input impedance calculated at convergence is presented in Table 

1. A good agreement between the values found is approved. 

 

Table1.Comparison of Zin of the rectangular patch antenna at convergence. 
 SONNET MoM_GEC +wavelets MoM_GEC +sinusoidals 

Zin 4.34-39.12i 3.96-38.025i 5.17-42.16i 

 

Figure 6 represents the compression ratio depending on the δ precision for both types of test functions. 

We can see that with the approach using sinusoidal functions the compression ratio does not exceed 45% for 

accuracy 𝛿 = 3.510−6 and stabilizes at this value until 𝛿 = 5 10−6 .By cons, with the approach developed using 

wavelets, we note that the compression ratio rapidly from zero to 75.8% when δ exceeds5 10−8. 

 
Figure 6.Compression ratio as a function of accuracy for different test functions. 

 

Figure 7 represents the error of the input impedance as a function of compression ratio for both types of 

test functions. The performances obtained with two test functions bases are not identical. Indeed, for the 

simulation of the rectangular planar antenna, it is possible to achieve a compression ratio of 75.2% for an error 

on the input impedance of which does not exceed 1%. 

We also compared the behavior of the relative error of the reflection coefficient as a function of the 

accuracy δ. We see from Figure 5 that the error rapidly changes from 0% to 23% when using sinusoidal 

functions. For the wavelet basis, this error stabilizes at 3.8% for an accuracy of up to 5 10−8. 

 
Figure 7.Error of the input impedance as a function of compression ratio for different test functions. 
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Figure 8. Error of the reflection coefficient as a function of compression ratio for different test functions. 

  

Figure 9 represents the frequency as a function of the input impedance for different compression ratios. 

The results obtained at zero compression rates are consistent with those obtained with Sonnet software. For a 

relatively high compression ratio (82%) the error becomes very important. 

 

 
Figure 9.Variation of input impedance with frequency for different compression ratio. 

 

V. Gain in storage memory cost and computational time 
 

We highlight in this paragraph the benefits of using wavelet trial functions in storage memory cost and 

reducing computational time compared to traditional MoM method. Indeed, the computational time needed by 

MoM is as [9]: 

 

𝑇𝑀𝑜𝑀  =  𝐴 +  𝐵𝑃 +  𝐶𝑃2  +  𝐷𝑃3                                  (25) 
 

𝑃: unknowns‘ number. A, B, C and D are constants independent of 𝑃. 

Aaccounts for the simulation set-up time. The meshing of the structure leads to the linear term BP. The 

filling of the system matrix is responsible for the quadratic term, and solving the matrix equation for the cubic 

term. The values of A, B, C and D depend on the problem at hand. The number of operations needed by 

MoM𝑁𝑜𝑝−𝑀𝑜𝑀  can is evaluated using: 

 

𝑁𝑜𝑝−𝑀𝑜𝑀 ≈ 𝑂(𝑃3)                                         (26) 

To show the gain of the MR-GEC compared to the MoM, we need to evaluate the cost of the new approach 

required to compute the input impedance.  
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The parameters used are the following: 

- 𝑇𝑠: Computational time of  𝑔𝑝 |𝑓𝑛 . 

- 𝑇𝑐 : Computational time of multiplication or addition. 

- 𝑇𝑖(𝑞): Time inversing of a square matri including q
2
 elements. 

- 𝑃: Number of test functions characterizing the structure. 

- 𝑁: Number of waveguide modes. 

The time used by the MoM-GEC to compute the input impedance of a planar microstrip structure is as: 

𝑇𝑀𝑜𝑀_𝐺𝐸𝐶 = 𝑁 × 𝑃 × 𝑇𝑠 +   𝑁 + 1 × 𝑃2 + 𝑃 × 𝑇𝑐 + 𝑇𝑖(𝑃) + 𝛿                 (27) 

So, in the MoM-GEC, the number of operations 𝑁𝑜𝑝−𝑀𝑜𝑀 _𝐺𝐸𝐶  can be expressed as: 

𝑁𝑜𝑝−𝑀𝑜𝑀_𝐺𝐸𝐶 ≈ 𝑂(𝑃2)                                     (28) 

We can deduct that 𝑁𝑜𝑝−𝑀𝑜𝑀_𝐺𝐸𝐶 ≪  𝑁𝑜𝑝−𝑀𝑜𝑀  chiefly when studying large structure with significant 

number of test functions. This reduction in number of operations leads then to a reduction in the computational 

time. Obviously, in MoM-GEC, the same computational time in the impedance matrix fill in is needed as the 

conventional moment method since a direct scheme based on a standard numerical integration is used to 

compute each element of the matrix and the wavelet functions, which have localized supports, must be 

computed and stored. 

Fortunately, we can take advantage of MALLAT‘s algorithm when using of wavelets as trial functions. 

In this paper, an indirect implementation scheme is used to improve significantly the cost of the matrix fill in. 

In the MoM_GEC method, to compute all matrix elements, we have to compute = 𝑁 × 𝑃 times the inner 

product  𝑔𝑝 |𝑓𝑛  for N modes in the modal basis and P different test functions. 

However, according to Eq.20, we need only to calculate  𝑓𝑚,𝜙𝑠 + +1,𝑘
 which can be approximated by applying 

the one point quadrature rule.  

At the finest resolution level (𝑠 + + 1), for each value of  𝑚 ∈ [1, 𝑁], the vector of 𝑃 = 2𝑠 + +1 

coefficients (𝑓𝑚,𝜙𝑠 + +1,𝑘
; 𝑘 = 0,1, … , 2𝑠 + +1 − 1), is filtered by 𝑕𝑘  and 𝑔𝑘  employing 2𝐿𝑃 multiplications and 

2𝐿(𝑃 − 1) additions [21], where L is the filter length.  

The number of required operations is divided by two with regard to the previous stage, due to the data 

decimation.  

Therefore the total number of multiplications used to compute all scalar products  𝑔𝑝 |𝑓𝑛  is𝑁𝑜𝑝 _𝑚𝑢𝑙𝑡 =

2𝐿𝑁(𝑃 +
𝑃

2
+

𝑃

4
+ ⋯+

𝑃

2𝑠 − = 4𝐿𝑁𝑃 1 − 21−𝑠 −  .  

The total number of additions used to compute all scalar products is𝑁𝑜𝑝 _𝑎𝑑𝑑 = 4𝐿𝑁(𝑃 − 1) 1 − 21−𝑠 −  .  

Using periodic wavelets and GEC modeling, the computational time required by MR-GEC to solve a proposed 

problem is as: 

𝑇𝑀𝑅_𝐺𝐸𝐶 =   𝑁 + 1 × 𝑃2 + 𝑃 + 𝑁𝑜𝑝 _𝑚𝑢𝑙𝑡 + 𝑁𝑜𝑝 _𝑎𝑑𝑑  × 𝑇𝑐 + 𝑇𝑖(𝑃) + 𝛿                  (29) 

 

In the adopted approach, after applying a threshold and by discarding all elements that are smaller than 

a predetermined threshold 𝛿, the impedance matrix will be converted into a very sparse matrix. Then, the use of 

wavelets as trial functions in the MoM_GEC method produces a sparse impedance matrix which may be solved 

rapidly thanks to the existence of several efficient techniques. 

For such problems, wavelets can be used to obtain a solution in 𝑂(𝑃 𝑙𝑜𝑔 𝑃) operations, where 𝑃 is the number 

of unknowns [21]. This is in contrast with a cost of 𝑂(𝑃3) for a dense matrix inversion or 𝑂(𝑃2) per dense 

matrix-vector multiply in an iterative solution such as conjugate-gradient. 

Table.2 compares the computation time required to calculate the input impedance for the test functions of 

wavelet type and sinusoidal type. 

The comparison of the computing time of simulation obtained by using this technique with sinusoidaland 

wavelet test functions is shown in table 3.  

There is a noticeable improvement in the required computing time for calculating the input impedance 

in our proposed method despite the relatively high number of wavelets functions. For instance at the frequency 

of 4.9 GHz, the computing time in a 2.6GHz Pentium IV processor with 2 Go of RAM is about 29.81 minutes 

for MR_GEC and 157.56minutes for MoM_GEC with sinusoidal test functions. 

At this point, the CPU time by our technique represents 18.92% of which obtained by sinusoidal 

functions.This performance obtained with the wavelet test functions can be explained in part by using a fast 

algorithm (MALLLAT algorithm) for the computation of inner products and other hand by the rapid 

convergence in number of function s modes. 

 

Table.2.Comparison of CPU time. 
Trial functions CPU time (minutes) Number of TE and TM 

modes at convergence 

Number of trial functions 

at convergence 
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sinusoial 157.56 90000 33 

wavelets 29.81 40000 512 

 

Table 3shows the memory space required to store matrices for both types of test functions. After 

compression, and considering the sparse matrix, the memory space required for storing the matrix in the case of 

the wavelet is reduced compared to the use of sinusoidal functions. A gain after compression memory space 

reaches 63.72% using the wavelets, and not more than 30.4% in the case of sinusoidal test functions. 

 

Table 3.Memory space required for storage impedances matrices at F=4.9 GHz. 
 Storage space memory (KO) Gain (%) 

Before compression After compression 

Trial functions Dense  TC (%) sparse 

sinusoïdals 4096 45.91 2851 30.4 

wavelets 4096 75.87 1486 63.72 

 

VI. Conclusion 

A new formulation of the Moment Method was presented in this paper to solve electromagnetic 

problem. The conventional MoM algorithm was combined to the generalized equivalent circuit method to get an 

original formulation. This technique is based on the impedance operator that is a spatial- spectral operator 

allowing an easy transition from spectral to spatial domain. To obtain a sparse matrix, the multiresolution 

wavelet basis functions are used in this paper. This method converges to the solution in a small number of 

iterations. The study of 2D planar microstrip structure presenting a step discontinuity is given to illustrate the 

properties of this method.In conclusion, we would like to highlight that MR-GEC analysis successfully removes 

the complexity of the proposed problem and it will be used to study more complex structures like multilayered 

patch antenna  that open various areas of research . 
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